• Haley Sweet opublikował 1 rok, 3 miesiące temu

    Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultraperipheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sqrt[s_NN]=200  GeV in d+Au collisions. The differential cross section as a function of momentum transfer -t is measured. In addition, data with a neutron tagged in the deuteron-going zero-degree calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the color glass condensate saturation model and the leading twist approximation nuclear shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup process, which provides insights into the nuclear gluonic structure.We present a closed formula for all Bern-Carrasco-Johansson (BCJ) numerators describing D-dimensional tree-level scattering amplitudes in a heavy-mass effective field theory with two massive particles and an arbitrary number of gluons. The corresponding gravitational amplitudes obtained via the double copy directly enter the computation of black-hole scattering and gravitational-wave emission. Our construction is based on finding a kinematic algebra for the numerators, which we relate to a quasishuffle Hopf algebra. The BCJ numerators thus obtained have a compact form and intriguing features gauge invariance is manifest, locality is respected for massless exchange, and they contain poles corresponding to massive exchange. Counting the number of terms in a BCJ numerator for n-2 gluons gives the Fubini numbers F_n-3, reflecting the underlying quasishuffle Hopf algebra structure. Finally, by considering an appropriate factorization limit, the massive particles decouple, and we thus obtain a kinematic algebra and all tree-level BCJ numerators for D-dimensional pure Yang-Mills theory.Recent transport studies have demonstrated the great potential of twisted monolayer-bilayer graphene (TMBG) as a new platform to host moiré flat bands with a higher tunability than twisted bilayer graphene (TBG). However, a direct visualization of the flat bands in TMBG and its comparison with the ones in TBG remain unexplored. Here, via fabricating on a single sample with exactly the same twist angle of ∼1.13°, we present a direct comparative study between TMBG and TBG using scanning tunneling microscopy and spectroscopy. We observe a sharp density of states peak near the Fermi energy in tunneling spectroscopy, confirming unambiguously the existence of flat electronic bands in TMBG. The bandwidth of this flat-band peak is found to be slightly narrower than that of the TBG, validating previous theoretical predictions. Remarkably, by measuring spatially resolved spectroscopy, combined with continuum model calculation, we show that the flat-band states in TMBG exhibit a unique layer-resolved localization-delocalization coexisting feature, which offers an unprecedented possibility to utilize their cooperation on exploring novel correlation phenomena. Our work provides important microscopic insight of flat-band states for better understanding the emergent physics in graphene moiré systems.We demonstrate enhanced Andreev reflection in a Nb/InGaAs/InP-based superconductor-semiconductor hybrid device resulting in increased Cooper-pair injection efficiency, achieved by Cooper-pair tunneling into a semiconductor quantum well resonant state. We show this enhancement by investigating the differential conductance spectra of two kinds of samples one exhibiting resonant states and one which does not. We observe resonant features alongside strong enhancement of Cooper pair injection in the resonant sample, and lack of Cooper pair injection in the nonresonant sample. The theoretical modeling for measured spectra by a numerical approach agrees well with the experimental data. Our findings open a wide range of directions in condensed matter physics and in quantum technologies such as superconducting light-emitting diodes and structures supporting exotic excitations.In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on simulating many-electron systems and inspect the competition between charge-density wave order, fermion pairing, and phase separation. In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix renormalization group calculations.Nonequilibrium dynamics of strongly correlated systems constitutes a fascinating problem of condensed matter physics with many open questions. Here, we investigate the relaxation dynamics of Landau-quantized electron system into spin-valley polarized ground state in a gate-tunable MoSe_2 monolayer subjected to a strong magnetic field. The system is driven out of equilibrium with optically injected excitons that depolarize the electron spins and the subsequent electron spin-valley relaxation is probed in time-resolved experiments. We demonstrate that both the relaxation and light-induced depolarization rates at millikelvin temperatures sensitively depend on the Landau level filling factor the relaxation is enhanced whenever the electrons form an integer quantum Hall liquid and slows down appreciably at noninteger fillings, while the depolarization rate exhibits an opposite behavior. Our findings suggest that spin-valley dynamics may be used as a tool to investigate the interplay between the effects of disorder and strong interactions in the electronic ground state.Exact propagating topological solitons are found in the easy-plane phase of ferromagnetic spin-1 Bose-Einstein condensates, manifesting themselves as kinks in the transverse magnetization. Propagation is only possible when the symmetry-breaking longitudinal magnetic field is applied. Such solitons have two types a low energy branch with positive inertial mass and a higher energy branch with negative inertial mass. Both types become identical at the maximum speed, a new speed bound that is different from speed limits set by the elementary excitations. The physical mass, which accounts for the number density dip, is negative for both types. In a finite one-dimensional system subject to a linear potential, the soliton undergoes oscillations caused by transitions between the two types occurring at the maximum speed.Turbulence spreading into the edge stochastic magnetic layer induced by magnetic fluctuation is observed at the sharp boundary region in the large helical device. The density fluctuation excited at the sharp boundary region with a large pressure gradient does not propagate into the boundary region due to the blocking of turbulence spreading by the large second derivative of the pressure gradient. Once the magnetic fluctuation appears at the boundary, the density fluctuation begins to penetrate the edge stochastic layer and the second derivative of the pressure gradient also decreases. The increase of density fluctuation in this layer results in the broadening and reduction of the peak divertor heat load. It is demonstrated that magnetic fluctuation plays a key role in controlling the turbulence spreading at the boundary of plasma which contributes to the reduction of divertor heat load.We study two-dimensional bosonic and fermionic lattice systems under nonequilibrium conditions corresponding to a sharp gradient of temperature imposed by two thermal baths. In particular, we consider a lattice model with broken time-reversal symmetry that exhibits both topologically trivial and nontrivial phases. Using a nonperturbative Green function approach, we characterize the nonequilibrium current distribution in different parameter regimes. For both bosonic and fermionic systems, we find chiral edge currents that are robust against coupling to reservoirs and to the presence of defects on the boundary or in the bulk. This robustness not only originates from topological effects at zero temperature but, remarkably, also persists as a result of dissipative symmetries in regimes where band topology plays no role. Chirality of the edge currents implies that energy locally flows against the temperature gradient without any external work input. In the fermionic case, there is also a regime with topologically protected boundary currents, which nonetheless do not circulate around all system edges.A large ongoing research effort focuses on obtaining a quantum advantage in the solution of combinatorial optimization problems on near-term quantum devices. A particularly promising platform implementing quantum optimization algorithms are arrays of trapped neutral atoms, laser coupled to highly excited Rydberg states. However, encoding combinatorial optimization problems in atomic arrays is challenging due to limited interqubit connectivity of the native finite-range interactions. Here, we present a four-body Rydberg parity gate, enabling a direct and straightforward implementation of the parity architecture, a scalable architecture for encoding arbitrarily connected interaction graphs. Our gate relies on adiabatic laser pulses and is fully programmable by adjusting two hold times during operation. We numerically demonstrate implementations of the quantum approximate optimization algorithm (QAOA) for small-scale test problems. Variational optimization steps can be implemented with a constant number of system manipulations, paving the way for experimental investigations of QAOA beyond the reach of numerical simulations.We report new dynamical modes in confined soft granular flows, such as stochastic jetting and dripping, with no counterpart in continuum viscous fluids. The new modes emerge as a result of the propagation of the chaotic behavior of individual grains-here, monodisperse emulsion droplets-to the level of the entire system as the emulsion is focused into a narrow orifice by an external viscous flow. We observe avalanching dynamics and the formation of remarkably stable jets-single-file granular chains-which occasionally break, resulting in a non-Gaussian distribution of cluster sizes. We find that the sequences of droplet rearrangements that lead to the formation of such chains resemble unfolding of cancer cell clusters in narrow capillaries, overall demonstrating that microfluidic emulsion systems could serve to model various aspects of soft granular flows, including also tissue dynamics at the mesoscale.

Szperamy.pl
Logo
Enable registration in settings - general
Compare items
  • Total (0)
Compare
0