-
Hall Bossen opublikował 1 rok, 3 miesiące temu
er.Aralia elata (Miq.) Seem. (Araliaceae), which is the key point of this review, is a precious wild vegetable that has served in the treatment of diabetes and rheumatoid arthritis in traditional folk medicine in East Asia (China, Japan, Korea, Russia). This review aims to overview the results of the current research related to Aralia elata (Miq.) Seem., with particular emphasis on chemical composition and biological activity. The existing research has been searched and summarized through the database, and it has been found that it has a certain therapeutic effecta on a variety of chronic diseases such as malignant tumors, cardio-cerebrovascular disease, diabetes, and its complications, etc. Additionally, it is loved by people in East Asia due to its rich taste as a wild vegetable. In conclusion, it offers the possibility of developing innovative pharmacological drugs as well as healthy food. Thus, it is critical to prove its validity and clarify the exact action mechanisms that promote it as a pharmacological drug. This review is expected to provide direction for future research.Adverse drug events have been a long-standing concern for the wide-ranging harms to public health, and the substantial disease burden. The key to diminish or eliminate the impacts is to build a comprehensive pharmacovigilance system. Application of the „big data” approach has been proved to assist the detection of adverse drug events by involving previously unavailable data sources and promoting health information exchange. Even though challenges and potential risks still remain. The lack of effective privacy-preserving measures in the flow of medical data is the most important Accepted one, where urgent actions are required to prevent the threats and facilitate the construction of pharmacovigilance systems. Several privacy protection methods are reviewed in this article, which may be helpful to break the barrier.Office white-coat effect tail (OWCET) is defined as a decrease of ≥10 mmHg in systolic blood pressure (SBP) between successive measurements after its waxing during an office visit. The influence of sex on the incidence of long-term major fatal and non-fatal cardiovascular events was studied in two Italian populational cohorts [from the Gubbio Study and the Italian Rural Areas of the Seven Countries Study (IRA)]. OWCET increased risk of cardiovascular disease (CVD) [HR 1.591 (95% CI 1.204-2.103)], coronary heart disease (CHD) [HR 1.614 (95% CI 1.037-2.512)] and stroke (STR) [HR 1.696 (95% CI 1.123-2.563)] events independently of age, serum and high density lipoprotein (HDL) cholesterol, cigarettes, body mass index (BMI) and SBP in women included in Gubbio study over an almost 20-year follow-up. However, risks of CVD, CHD or STR increased in men with OWCET neither in the Gubbio 20-year follow-up nor in the IRA 50-year follow-up. The correction of the regression dilutions bias between the first and the subsequent SBP measurements did not significantly change these outcomes. Primary care physicians should evaluate OWCET, especially in women, to improve stratification of long-term CVD, CHD and STR risks.Tactile P300 brain-computer interface (BCI) generally has a worse accuracy and information transfer rate (ITR) than the visual-based BCI. It may be due to the fact that human beings have a relatively poor tactile perception. This study investigated the influence of visual attention on the performance of a tactile P300 BCI. We designed our paradigms based on a novel cheeks-stim paradigm which attached the stimulators on the subject’s cheeks. Two paradigms were designed as follows a paradigm with no visual attention and another paradigm with visual attention to the target position. Eleven subjects were invited to perform the two paradigms. We also recorded and analyzed the eyeball movement data during the paradigm with visual attention to explore whether the eyeball movement would have an effect on the BCI classification. The average online accuracy was 89.09% for the paradigm with visual attention, which was significantly higher than that of the paradigm with no visual attention (70.45%). Significant difference in ITR was also found between the two paradigms ([Formula see text]). The results demonstrated that visual attention was an effective method to improve the performance of tactile P300 BCI. Our findings suggested that it may be feasible to complete an efficient tactile BCI system by adding visual attention.The diagnosis of epilepsy often relies on a reading of routine scalp electroencephalograms (EEGs). Since seizures are highly unlikely to be detected in a routine scalp EEG, the primary diagnosis depends heavily on the visual evaluation of Interictal Epileptiform Discharges (IEDs). This process is tedious, expert-centered, and delays the treatment plan. Consequently, the development of an automated, fast, and reliable epileptic EEG diagnostic system is essential. In this study, we propose a system to classify EEG as epileptic or normal based on multiple modalities extracted from the interictal EEG. The ensemble system consists of three components a Convolutional Neural Network (CNN)-based IED detector, a Template Matching (TM)-based IED detector, and a spectral feature-based classifier. We evaluate the system on datasets from six centers from the USA, Singapore, and India. The system yields a mean Leave-One-Institution-Out (LOIO) cross-validation (CV) area under curve (AUC) of 0.826 (balanced accuracy (BAC) of 76.1%) and Leave-One-Subject-Out (LOSO) CV AUC of 0.812 (BAC of 74.8%). The LOIO results are found to be similar to the interrater agreement (IRA) reported in the literature for epileptic EEG classification. Moreover, as the proposed system can process routine EEGs in a few seconds, it may aid the clinicians in diagnosing epilepsy efficiently.Spasticity is a common post-stroke syndrome that imposes significant adverse impacts on patients and caregivers. This study aims to improve the efficiency of botulinum toxin (BoNT) in managing spasticity, by utilizing a three-dimensional innervation zone imaging (3DIZI) technique based on high-density surface electromyography (HD-sEMG) recordings. Stroke subjects were randomly assigned to two groups the control group ([Formula see text]) which received standard ultrasound-guided injections, and the experimental group ([Formula see text]) which received 3DIZI-guided injections. The amount of BoNT given was consistent for all subjects. The Modified Ashworth Scale (MAS), compound muscle action potential (CMAP) and muscle activation volume (MAV) from bilateral biceps brachii muscles were obtained at the baseline, 3 weeks, and 3 months after injection. Intra-group and inter-group comparisons of MAS, CMAP amplitude and MAV were performed. An overall improvement in MAS of spastic elbow flexors was observed during thIZI technique.Epstein-Barr virus is a tumor-associated, enveloped virus with glycoprotein receptor gHgL on its surface. gH attaches to epithelial or B cells and mediates internalization. Till date, no specific anti-EBV FDA approved drug is available. Targeting gH may aid in designing virus-specific therapeutics and reducing the drug induced complications in host. We investigated the influence of antiviral phytochemicals on gH using computational approaches. Through molecular docking, we performed binding energy analysis of cellocidin, bruceantin, EGCG, formononetin and sesquiterpene lactones with gH DII/DIII interface, crucial for gH functions. Further, to cause any perturbations in the protein function, the molecules must bind stably to gH. Bruceantin and EGCG interacted with high affinities to gH. Simulation of these two molecules revealed stable binding with gH throughout 100 ns moreover, van der Waal interactions stabilized overall binding. Mutation of amino acids like V265, L269, L315, I423, I459, L474 and F475 involved in stable binding to gH was predicted deleterious to protein function. We obtained no difference in RMSD between these two ligands and minor deviations in the RMSF were noticed compared to gH. Conclusively, our study provided insights into the potential of bruceantin and EGCG to target gH. Different amino acids are involved in binding of each ligand to gH, engagement of certain amino acids may affect the virus binding with epithelial or B cells. The interaction of the ligand with gH may trap it in its native conformation or induce structural flexibility thereby inhibiting the interaction with host receptors or other glycoproteins.Communicated by Ramaswamy H. Sarma.Abnormal protein aggregation in the nervous tissue leads to several neurodegenerative disorders like Alzheimer’s disease (AD). In AD, accumulation of the amyloid beta (Aβ) peptide is proposed to be an early important event in pathogenesis. Significant research efforts are devoted so as to understand the Aβ misfolding and aggregation. Molecular dynamics (MD) simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β in relation to the pathologies of AD. Present work describes the MD simulations for 100 ns so as to probe the structural and conformational dynamics of Aβ1-42 assemblies and its mutants. Essential dynamics analysis with respect to conformational deviation of Cα was evaluated to identify the largest residual fluctuation of Cα. Conformational stability of all Aβ mutants was analyzed by computing RMSD, deciphering the convergence is reached in the last 20 ns in all replicas. To highlight the low frequency mode of motion corresponding to the highest amplitude, atomic displacements seen in trajectory, distance pair principal component analysis (dpPCA) was performed, which adumbrated mutations strongly affect the conformational dynamics of investigated model when compared with wild type. Dynamic cross correlation matrix (DCCM) also suggests the conserved interactions of wild Aβ and imply mutations in β3-β4 loop region induce deformity and residual fluctuations as observed from simulation. Present study indicate the mutational energy landscape which induces deformation leading to fibrillation.Communicated by Ramaswamy H. Sarma.ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients.


